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Quote 
 

 
 

“It seems that the rivers know the theory. It only remains to  
 

convince the engineers of the validity of this analysis.” 
 
 

Emil Gumbel 
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(1) Traditional Statistical Methods 
 

 
 

• Fit models/distributions to all data 
 

-- Even if primary focus is on extremes 
 

 
• Statistical theory for averages 

 
-- Ubiquitous role of normal distribution 

 
-- Central Limit Theorem 
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• Robustness  
 

-- Avoid sensitivity to extremes  
 (outliers / contamination) 

 
 

• Nonparametric Alternatives 
 
-- Kernel density estimation 
 Ok for center of data (but for extremes?) 
 
-- Resampling 
 Fails for maxima 
 Fails for heavy-tailed distributions 



 6

• Conduct sampling experiment 
 
-- Draw random samples from exponential distribution (rate = 1) and 

calculate mean for each sample 
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(2) Rationale for Extreme Value Analysis 
 

 
 

• Limited information about extremes 
 

-- Exploit what theory is available 
 

 
• More robust/flexible approach 

 
-- Tail behavior of standard distributions is too restrictive 
 
 Statistical theory indicates possibility of “heavy” tails 
 Data suggest evidence of “heavy” tails 
 Conventional distributions have “light” tails 
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-- Example 
 

 Let X have standard normal distribution with density function φ 
 
 For large x,  Pr{X > x} ≈ φ(x) / x 
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• Statistical behavior of extremes 
 

-- Effectively no role for normal distribution 
 
-- What form of distribution(s) instead? 
 
 
• Conduct another sampling experiment 
 
-- Calculate largest value of random sample 
 (instead of mean) 
 
 (i) Normal distribution (mean = 0, st. dev. = 1) 
 
 (ii) Exponential distribution (rate = 1) 
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(3) Extremal Types Theorem 
 

 
 
• “Sum stability” 

 
-- Central Limit Theorem 

 
X1, X2, . . ., XT  independent & identically distributed 
 

 Sum ST = X1 + X2 + . . . + XT   
 
 approximately normally distributed for large T 
 (even when dist. of Xt’s far from normal) 

 
-- Normal distribution for Xt’s 

 
 Then sum (or mean) is exactly normally distributed  
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• “Max stability” 
 
-- Want to find distribution(s) for which maximum has same form as 

original sample 
 
-- Extremal Types Theorem 

 
X1, X2, . . ., XT  (independent & identically distributed) 
 
Distribution of MT = max{X1, X2, . . ., XT} is approximately 
generalized extreme value (GEV) for large T: 

 
Pr{MT ≤ x} ≈ exp {−[1 + ξ (x − μ)/σ]−1/ξ }, 1 + ξ (x − μ)/σ > 0 

 
μ  location parameter  (depends on T) 
σ > 0 scale parameter  (depends on T) 
ξ  shape parameter
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(i) ξ = 0  (Gumbel type, limit as ξ → 0) 
 

“Light” tail  
 

“Domain of attraction” for many common distributions (e. g., 
normal, lognormal, exponential, gamma) 
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(ii) ξ > 0  (Fréchet type) 
 
   “Heavy” tail with E(X r) = ∞  if r ≥ 1/ξ   

  (e. g., infinite variance if ξ ≥ 1/2) 
 
  Fits precipitation, streamflow, economic impacts 
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(iii)  ξ < 0  (Weibull type)  
 
 Bounded tail  [ x < μ + σ / (−ξ) ] 
 Fits temperature, wind speed, sea level 
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(4) Block Maxima Approach
 

  

• GEV distribution 
 

-- Fit directly to maxima 
 
(e. g., annual maximum of daily prec. amount or highest 
temperature over given year) 

 
 

• Parameter estimation 
 

-- Maximum likelihood estimation (MLE) 
 
Iterative numerical procedure 
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• Fort Collins daily precipitation amount 
 
-- Fort Collins, CO, USA 
  
 Time series of daily precipitation amount (in), 1900-1999 
 
 Semi-arid region 
 

Marked annual cycle in precipitation 
(wettest in late spring/early summer, driest in winter) 
 
No obvious long-term trend 
 

 Recent flood, 28 July 1997 
 (Damaged campus of Colorado State Univ.) 
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• Parameter estimates and standard errors  
 

Parameter   Estimate  (Std. Error) 
 

Location μ    1.347   (0.617) 
 

Scale σ    0.533   (0.488) 
 

Shape ξ   0.174   (0.092) 
 
 
-- Likelihood ratio test for ξ = 0  (P-value ≈ 0.038) 
 
-- 95% confidence interval for shape parameter ξ 
  (based on profile likelihood) 
 

0.009 < ξ < 0.369 
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(5) Tails of Distributions 
 

 
 

• Analogue to max stability  
 

-- X random variable 
 
Y = X − u “excess” over high threshold u, conditional on X > u 

 
Then Y has an approximate generalized Pareto (GP) distribution 
for large u: 
 

Pr{Y ≤ y} ≈ 1 − [1 + ξ (y/σ*)]−1/ξ ,  y > 0, 1 + ξ (y/σ*) > 0 
 
σ* > 0 scale parameter (depends on threshold u) 
ξ  shape parameter (same interpretation as for GEV dist.) 
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(i)  ξ = 0  (exponential type) 
 
  “Light” tail 
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(ii)  ξ > 0  (Pareto type) 
 
 “Heavy” tail 
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(iii)  ξ < 0  (beta type) 
 
Bounded tail  [ y < σ / (−ξ)  or x < u + σ / (−ξ) ] 
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• Connection between GP & GEV 
 
-- Maximum MT ≤ u if none of Xt 's exceeds u, t = 1, 2, . . ., T 
 
-- Assume Xt 's independent with common distribution function F 
 
-- Number of exceedances has binomial distribution with 

parameters:  No. of trials = T  
      Prob. of “success” = 1 − F (u) 
 
-- Using Poisson approximation to binomial 
 
 
   Pr{MT ≤ u} ≈ exp{ − T [1 − F (u)]} 
 
 
  for large T & u such that T [1 − F (u)] ≈ constant 
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• Scaling / power laws 
 
-- “Memoryless” property of exponential distribution (parameter σ*) 

 
 

Pr{Y > y + y′ │Y > y′} = Pr{Y > y} = e−y/σ* 
 

 
Suppose Y represents life span & has exponential distribution:  
 
Conditional distribution of future survival remains exponential 
with same scale parameter (no matter how long individual has 
already survived) 

 
Good model for lifetimes of small birds 
(die due to accidents rather than “aging”) 
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-- GP distribution 
 
If condition on higher threshold, then retain same shape 
parameter but need to rescale (i. e., no longer memoryless) 
 
Suppose excess Y over threshold u has an exact GP distribution 
with parameters ξ & σ*(u)  
 
Then the excess over a higher threshold u' > u has GP 
distribution with parameters ξ & σ*(u') 

 
σ*(u') = σ*(u) + ξ(u' − u) 
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• Hurricane damage 
 
-- Adjusted data (Remove trends in societal vulnerability), 1925-1995 
-- Excess over threshold of u = 6 billion US$ (for year 1995) 
 
• Parameter estimates and standard errors 
 

 Parameter  Estimate  (Std. Error) 
 
 Scale σ *  4.589   1.817 
 Shape ξ  0.512   0.341 

 
-- Likelihood ratio test for ξ = 0  (P-value ≈ 0.018) 
 
-- 95% confidence interval for shape parameter ξ 
 (based on profile likelihood): 
 

0.059  < ξ < 1.569
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(6) Choice of Threshold 
 

 
• Invariance of GP above threshold 
-- Same shape parameter ξ 
-- Reparameterize scale parameter:  σ*(adj) = σ*(u) − ξ u, as u varies 
-- Check for stability in parameter estimates as vary threshold 
 
• Trade-off 
-- Better GP approximation for higher threshold 
-- More reliable estimation for lower threshold 
-- Lack of automatic procedure 

 
• Hurricane damage example 
-- Vary threshold u from 2 to 7 billion $ 
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(7) De-Clustering 
 

 
 

• Time series models [Autoregressive (AR), short memory] 
 

-- Lack of clustering at high levels 
 
 

• Apparent clustering at high levels 
 

-- Daily minimum & maximum temperature (strong evidence) 
-- Daily precipitation (weak evidence) 

 
• Lack of automatic procedure for de-clustering 
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• De-clustering procedures 
 
-- Runs de-clustering 
 

Clusters separated by at least r consecutive observations below 
threshold (r = 1, 2, . . .) 
 

 Model cluster maxima (instead of individual cluster members) 
 

GEV & GP approximations still valid  
 (Need to adjust location & scale parameters) 
Adjustment depends on extremal index θ, 0 < θ ≤ 1  
θ can be interpreted as inverse of “limiting” mean cluster size 
θ = 1 corresponds to negligible dependence at high levels 
 (e. g., AR process) 
Dependence increases as θ decreases 
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• Phoenix minimum temperature 
 
-- Phoenix, AZ, USA 
 
 Time series of daily minimum temperature (°F) for July-August, 

1948-1990 
 
 Urban heat island (Warming trend as cities grow) 

 
Phoenix known to have experienced heat island-induced 
temperature trends 

 
-- Lower tail vs. upper tail 
 
 Model lower tail as upper tail after negation 
 
 So consider X* = −X, where X denotes daily minimum temperature 
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• Fit GP distribution to de-clustered data (ignore any trend for now) 
 

-- Threshold u = −73 °F 
 

-- Use runs de-clustering (separated by r = 1 day) 
 
 De-clustering Parameter  Estimate  (Std. Error)   
   
  None   Scale σ*  3.915   (0.303) 
  r = 1       4.167   (0.501) 
            
  None   Shape ξ   −0.246   (0.049)    
  r = 1       −0.242   (0.079) 
 
-- Mean cluster size 
 262 / 115 ≈ 2.3 days  (very crude estimate of θ ≈ 0.44) 
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• Alternatives to de-clustering 
 
-- Resampling to estimate standard errors 
 (avoid throwing away information about extremes) 
 
-- Explicit modeling of temporal dependence at high levels 

(e. g., Markov model)  
 
-- Revisit issue later when consider spells of extreme weather 
 (e. g., heat waves) 
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(8) Point Process / Peaks over Threshold 
 

 
 
• Rationale 

 
-- Make more use of information available about upper tail 
  (even if only interested in obtaining estimate for block maxima) 
 

• Consider process through which extremes arise 
  
 -- Occurrence 
  (e. g., exceedance of high threshold) 
  
 -- Severity 
  (e. g., excess over threshold) 
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• Poisson process for rare events 
 

-- Event is exceedance of high threshold (i. e.,  X > u) 
 

 Rate parameter λ > 0 
Pr{no events in [0, T]} = e−λT 

 Mean number of events in [0, T] = λT 
 
• GP distribution for excess over threshold 

 
-- Excess Y = X − u  (parameters ξ & σ*) 

 
 

• Point process representation 
 

-- Occurrence & severity of extreme events 
 
(two-dimensional, non-homogenous Poisson process) 
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-- GEV parameterization 
  
 Can relate parameters of GEV (μ, σ, ξ) to parameters of point 

process (λ, σ*, ξ): 
   (i) Shape parameter ξ identical 
  (ii) log λ = − (1/ξ) log[1 + ξ(u − μ)/σ] 
  (iii) σ* = σ + ξ(u − μ) 
  
 
 Additional detail: 
   
 Time scaling constant h   
 (e.g., for annual maximum of daily data,  h ≈ 1/365.25) 
 

Change of time scale h for GEV(μ, σ, ξ) to h' (δ = h/h'): 
 

σ' = σ δξ, μ' = μ + [σ'(1 − δ−ξ )] / ξ 
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• Two different approaches to parameter estimation 
 
-- Orthogonal approach (estimate for two components separately) 
 
 Just fit Poisson & GP components separately 
  Convenient for estimation 
  Difficult to interpret in presence of covariates 
 
-- GEV re-parameterization (fit both dimensions simultaneously) 
 
  More difficult to estimate 
  But interpretable even with covariates 
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• Fort Collins daily precipitation 
 
-- Now analyze daily data instead of just annual maxima (but ignore 

annual cycle for now) 
  
  Estimation Method   Parameter   Estimate 

 
(i) Orthogonal    Rate λ    10.6 per yr. 

(u = 0.395 in)   Scale σ*   0.322 
       Shape ξ   0.212 
 
(ii) Point process   Location μ    1.383 

(u = 0.395 in,   Scale σ    0.532 
h = 1/365.25)   Shape ξ   0.212 
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(9) Risk Communication (Under Stationarity) 
 

 
 
• Assume Stationarity (for now) 
 
-- Unchanging climate 
 
 
• Return period / return level 
 
-- Return level with (1/p)-yr return period 

 
x(p) = F −1(1 − p) 

 
Quantile of cumulative distribution function F (e. g., GEV) 
(e. g., p = 0.01 corresponds to 100-yr return period) 
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• GEV distribution 
 

  x(p) = μ − (σ/ξ) {1 − [− log(1 − p)]}−ξ 
 
 Confidence interval:  Re-parameterize replacing location 

parameter μ with x(p) & use profile likelihood 
 
-- Fort Collins precipitation example (annual maxima) 
 Estimated 100-yr return period: 5.10 in 

95% confidence interval based on profile likelihood: 
   

3.93 in < x(p) < 8.00 in 
 
-- Similar approach for GP distribution 
 (except complication to take into account rate of occurrence of 

exceedances of threshold) 


