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Quote 
 

 
 
“In order to apply any theory we have to suppose that the data are 

homogeneous, i.e. that no systematical change of climate and no 

important change in the basin have occurred within the observation 

period and that no such changes will take place in the period for 

which extrapolations are made.” 

 
Emil Gumbel 

(Ann. Math. Stat., 1941) 
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(1) Non-Stationarity 
 

 
• Sources 

 
-- Trends 
 
 Global climate change:  
 Trends in frequency & intensity of extreme weather events  
 
-- Cycles 
 
 Annual & diurnal natural aspect of climate 
 
-- Physically-based 
 
 Increased precision, improved realism 
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• Theory 
 
-- No general extreme value theory under non-stationarity 
 Only limited results under restrictive conditions 
 
• Methods 

 
-- Introduction of covariates resembles generalized linear models 

Only limited connection (e. g., Weibull case) 
 
-- Straightforward to extend MLE 
 

• Issues 
 

-- Nature of relationship between extremes & covariates 
Resembles that for overall / center of data? 
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(2) Trends in Extremes 
 

  
 

• Trends 
 

-- Example  (Urban heat island) 
 
Trend in summer minimum of daily minimum temperature at 
Phoenix, AZ  (i. e., block minima) 
 

min{X1, X2, . . ., XT} = − max{−X1, −X2, . . ., −XT} 
 
Assume summer minimum temperature in year t has GEV 
distribution with location & scale parameters: 

 
μ(t) = μ0 + μ1 t,  log σ(t) = σ0 + σ1 t,  ξ(t) = ξ,  t = 1, 2, . . . 
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• Parameter estimates and standard errors 
 

Parameter   Estimate  (Std. Error)  
 

Location: μ0   66.17*   
    μ1     0.196*   (0.041)    
 

Scale:  σ0      1.338 
    σ1   −0.009   (0.010)  
 

Shape:  ξ   −0.211 
 
 
 *Sign of location parameters reversed to convert back to minima 
 
-- Likelihood ratio test for μ1 = 0  (P-value < 10−5) 
 
-- Likelihood ratio test for σ1 = 0  (P-value ≈ 0.366) 
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• Q-Q plots under non-stationarity 
 
-- Transform to common distribution 
 
 Non-stationary GEV [μ(t), σ(t), ξ(t)] 
 
 Transform to Gumbel or exponential distribution 
 
 (i) Non-stationary GEV to exponential 
 
 

εt = {1 + ξ(t) [Mt − μ(t)] / σ(t)}−1/ξ(t) 
 
 
 (ii) Non-stationary GEV to Gumbel  (used by extRemes) 
 
 

εt = [1/ξ(t)] log {1 + ξ(t) [Mt − μ(t)] / σ(t)} 
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(3) Other Forms of Covariates 
 

 
 
• Physically-based covariates 

 
-- Example  [Arctic Oscillation (AO)] 

 
 Winter maximum of daily maximum temperature at Port Jervis, NY 
 (i. e., block maxima) 

 
 Z denotes winter index of AO 

 
Given Z = z, assume conditional distribution of winter max. temp. 
is GEV distribution with parameters: 

 
μ(z) = μ0 + μ1 z, log σ(z) = σ0 + σ1 z,  ξ(z) = ξ 
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• Parameter estimates and standard errors 
 

Parameter   Estimate  (Std. Error)  
 

Location: μ0   15.26   
    μ1     1.175   (0.319)    
 

Scale:  σ0      0.984 
    σ1   −0.044   (0.092)  
 

Shape:  ξ   −0.186 
 
 
-- Likelihood ratio test for μ1 = 0  (P-value < 0.001) 
 
-- Likelihood ratio test for σ1 = 0  (P-value ≈ 0.635) 
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• Fort Collins precipitation example 
 

-- Threshold u = 0.395 in  (could be time varying as well) 
 Length of year T ≈ 365.25 days 
 
-- Orthogonal approach 
 
 (i) Annual cycle in Poisson rate parameter 

 
log λ(t) = λ0 + λ1 sin(2πt / T) + λ2 cos(2πt / T) 

 
  Parameter  Estimate  (Std. Error) 
  Rate: λ0  −3.721    
    λ1    0.221   (0.045) 
    λ2  −0.846   (0.049) 
 

Likelihood ratio test for λ1 = λ2 = 0  (P-value ≈ 0)
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(ii) Annual cycle in scale parameter of GP distribution 
 

log σ*(t) = σ0* + σ1* sin(2πt / T) + σ2* cos(2πt / T) 
 
  Parameter  Estimate  (Std. Error) 
  Scale: σ0*  −1.238    
    σ1*    0.088   (0.048) 
    σ2*  −0.303   (0.069) 
  Shape ξ    0.181 
 
Likelihood ratio test for σ1* = σ2* = 0  (P-value < 10−5) 
 

 Q-Q plot:  Transform non-stationary GP to exponential 
 

εt = [1/ξ(t)] log {1 + ξ(t) [Yt / σ*(t)]} 



 17

-- Point process approach  (u = 0.395 in,  h = 1/365.25) 
 

Annual cycles in location & scale parameters of GEV distribution: 
 

μ(t) = μ0 + μ1 sin(2πt / T) + μ2 cos(2πt / T) 
 

log σ(t) = σ0 + σ1 sin(2πt / T) + σ2 cos(2πt / T) 
 
Parameter  Estimate (Std. Error)  LR Test 

Location: μ0    1.281 
   μ1  −0.085   (0.031)  μ1 = μ2 = 0 
   μ2  −0.806   (0.043)  (P-value ≈ 0) 
Scale: σ0  −0.847    
   σ1  −0.123   (0.028)  σ1 = σ2 = 0     
   σ2  −0.602   (0.034)  (P-value ≈ 0) 
Shape ξ    0.182 
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(4) Risk Communication (Under Non-Stationarity) 
 

 
 
• Interpretation of return level x(p)  (under stationarity) 
 
-- Stationarity implies identical distributions 

(not necessarily independence) 
 
(i) Expected waiting time  (under temporal independence) 
 Waiting time W has geometric distribution: 
 

Pr{W = k} = (1 − p)k−1p,  k = 1, 2, . . .,  E(W) = 1/p 
 
(ii) Length of time Tp for which expected number of events = 1  
 

1 = Expected no. events = Tp p,  so Tp = 1/p 
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• Options  (under non-stationarity) 
 
-- Retain one of these two interpretations 
 

Not clear which one is preferable: 
Property (ii) is easier to work with (like average probability) 
Property (i) may be more meaningful for risk analysis 

 
-- Switch to “effective” return period and “effective” return level 
 (i. e., varying probabilities over time) 
  
 Fort Collins example: 
 
 Rescale parameters of GEV distribution for annual maxima to 

obtain those for monthly maxima 
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-- Return level with annual cycles 
 

Could still determine single annual return period 1/p or return 
value x(p) (assuming temporal independence): 

 
   1 − p = Pr{MT ≤ x(p)} ≈ ∏t pt (t = 1, 2, . . ., T) 
 

where pt denotes probability do not exceed x(p) at time t  
(Obtained from fitted point process, see Chapter 7 in Coles 2001) 

 
 Fort Collins example (July 1997 flood):  Observed value of 4.63 in 
 
 Corresponding return period for point process model (with annual 

cycles in location and scale parameters of GEV dist.):  50.8 yr* 
 
 *562.3 yr if assume Gumbel distribution instead 
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(5) Economic Impacts / Random Sums 
 

 
 

• Economic impacts from extreme weather events 
 

-- Both frequency & intensity vary from year to year 
-- Damage total (e. g., annual) can be viewed as “random sum” 
 
 
• Hurricane damage data 
 
-- Already analyzed upper tail of damage from individual storms 

using GP distribution 
 
-- Now consider rate of storms, covariates 
 (e. g., ENSO phenomenon, trends) 
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• Statistics of random sums 
 
-- Notation 

 
N(t) number of events in tth yr 
 
Xk damage from kth event in tth yr,  k = 1, 2, . . ., N(t) 
 
Xk's independent and identically distributed with common 
distribution function F 
 
Xk's independent of N(t) 
 
Total damage in tth yr (random sum): 
 

S(t) = X1 + X2 + · · · + XN(t),  N(t) ≥ 1 
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-- Mean of total annual damage  [assume E(Xk) < ∞] 
 

E[S(t)] = E[N(t)] E(Xk) 
 
 
-- Variance of total annual damage  [assume Var(Xk) < ∞] 

 
Var[S(t)] = E[N(t)] Var(Xk) + Var[N(t)] [E(Xk)]2 

 
 
-- Maximum damage from individual events in tth yr, MN(t)  
 (i. e., maximum of random number of random variables) 
 
 Assume N(t) has exact Poisson distribution (rate parameter λ): 
  

Pr{MN(t) ≤ x} = exp{ −λ[1 − F(x)]} 
  
 (exact result, not just asymptotic) 
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(i) Occurrence component N(t) 
 
-- Assume N(t) has Poisson distribution with rate parameter λ(t) 
 
-- Trend  
 
    log λ(t) = λ0 + λ1 t,  t = 1, 2, . . . 
 Estimate of λ1 ≈ 0.0030  (std. error ≈ 0.0043) 
 Likelihood ratio test for λ1 = 0  (P-value ≈ 0.492) 
 
-- ENSO phenomenon as covariate 
 
     log λ(z) = λ0 + λ1 z 
  
 where z = −1, 0, 1 indicate La Niña, neutral, or El Niño event 
 Estimate of λ1 ≈ −0.248  (std. error ≈ 0.115) 
 Likelihood ratio test for λ1 = 0  (P-value ≈ 0.029) 
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(ii) Damage component Xk 
 
-- Model overall distribution F as lognormal 
 
 No trend in mean of log-transformed damage 
 
 Dependence of mean of log-transformed damage on ENSO state 
 (lower mean log-transformed damage during El Niño event) 
 
-- GP distribution for upper tail (Y excess in damage over $6 billion) 
 
 Dependence on ENSO state Z = z: 
 
  log σ*(z) = σ0* + σ1* z 
   
 Estimate of σ1* ≈ 0.048 
 Likelihood ratio test for σ1* = 0:  P-value ≈ 0.275 
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(6) Extreme Weather Spells 
 

 
• Definition of heat wave / hot spell 
 
-- Recall “runs de-clustering” algorithm 
-- More complex definition (multiple thresholds) 
 
• Lack of use of extreme value theory in modeling weather spells 
 
-- Extremal dependence at high levels 
 
• Cluster statistics 

 
-- Duration 
-- Maxima 
-- Other measures of intensity 
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• Covariate approach 
 
-- Advantage  
 
 Requires only univariate extreme value theory (not multivariate) 
 
-- Let Y1, Y2, . . ., Yk denote excesses over threshold within given 

cluster / spell 
 

Model conditional distribution of Y2 given Y1 as GP distribution 
with scale parameter depending on Y1:  e. g., 
 
   σ*(y) = σ0* + σ1* y,  given Y1 = y 
 
Similar model for conditional distribution of Y3 given Y2 (etc.) 
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(7) Origin of Bounded and Heavy Tails 
 

 
 
• Upper Bounds / Penultimate approximation 

 
-- Weibull type of GEV (i. e., ξ < 0) provides better approximation 

than asymptotic Gumbel when parent distribution is (e. g.) 
normal  (with ξ ↑ 0 as block size T → ∞) 
 

-- “Thermostat hypothesis” 
 Upper bound on temperature in tropical oceans 
 Implications for impact of global warming on coral reefs 
 
-- Intensification of hurricanes 
 Upper bound on maximum wind speed (Trend?) 
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• Heavy tails / Penultimate approximation 
 
-- “Stretched exponential” distribution (traditional form of Weibull) 
 

Pr{Y > y} = exp( − yc),  y > 0,  c > 0 
  
 with shape parameter c (for simplicity, unit scale parameter) 
 

(i) c < 1 
 
Fréchet type of GEV (i. e., ξ > 0) better approximation than 
asymptotic Gumbel (explanation for heavy tail of precipitation?) 
 
(ii) c > 1  
 
Weibull type of GEV (i. e., ξ < 0) better approximation than 
asymptotic Gumbel (explanation for bounded upper tail of wind 
speed?) 
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-- Simulation experiment 
 
 Generated observations with stretched exponential distribution  

(shape parameter c = 2/3:  physical argument, Wilson & Toumi 
2005) 

 
 Determine maximum of sequence of length T = 100, M100 

(daily precipitation occurrence rate about 27%) 
 
Should produce GEV shape parameter of just over 0.1 
(Heuristic argument gives ξ ≈ 0.11 for this block size) 
 
Fitted GEV distribution (sample size = 1000): 
 
  Estimate of ξ ≈ 0.12 
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• Heavy Tails / Chance mechanism 
 

-- Mixture of exponential distributions 
 

 Suppose Y has exponential distribution with scale parameter σ*: 
 

Pr{Y > y │ σ*} = exp[ −(y/σ*)] 
 

Further assume that the rate parameter ν = 1/σ* varies according 
to a gamma distribution with shape parameter α (unit scale): 
 

fν (ν; α) = [Γ(α)]−1 να−1 exp(−ν),  α > 0 
 

 The unconditional distribution of Y is heavy-tailed:  
 

Pr{Y > y} = (1 + y)−α 
 
 (i.e., exact GP distribution with shape parameter ξ = 1/α) 



 40

-- Simulation experiment 
 
 Induce heavy tail from conditional light tails 
 
 Let rate parameter of exponential distribution have gamma 

distribution with shape parameter α = 2 
  
 Then mixture distribution is GP with shape parameter ξ = 0.5 
 
 Fit GP distribution to simulated exponential mixture 
 (sample size = 1000): 
 
   Estimate of ξ ≈ 0.51 
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(8) Multivariate Extremes 

 
 

 
• Extreme value theory 

 
-- Well developed, but complex 

 
• Bivariate normal distribution (correlation coefficient ρ) 

 
-- Joint distribution of two random variables (X, Y) 

 
-- Clustering in overall sense for ρ > 0 

(but no clustering at high levels in asymptotic sense) 
 

Pr{Y > u │ X > u} → 0 as u → ∞ 
 
[Recall Pr{X > x} ≈ φ(x) / x if X has standard normal distribution] 
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• Try univariate extreme value theory with covariates instead 
 

-- Example (Fruit-frost problem Yakima, WA, USA)  
 

 Conditional distribution of observed daily minimum temperature 
X (for X < u = 26.5 ºF) given forecast Z 
 
(i) Occurrence of X < u given forecast Z = z 
 
Poisson distribution with rate:  log λ(z) = λ0 + λ1 z 

 
 

(ii) Deficit Y = u − X given forecast Z = z 
 
GP distribution with scale:  log σ*(z) = σ0* + σ1* z 
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(9) Spatial Extremes 
 

 
 

• Approaches 
 

-- Extensions of extreme value theory  
 

Max stable processes (as in univariate case) 
 
Beautiful theory (e. g., model for how parameters depend on 
spatial support), but lack of realistic applications 

 
-- Spatial smoothing  (Soon to be added to extRemes?) 

First model each site separately 
Then smooth parameter estimates or return levels 
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-- Bayesian hierarchical modeling  / Markov Chain Monte Carlo  
  

Attempts, but still under development 
(e. g., conditional independence does not induce enough 
unconditional spatial dependence) 

 
-- Detection of trends in extremes 
  “Borrow strength” 

 
Akin to “regional analysis” in hydrology for flood estimation  
 
Assume common slope of trend across region (also common 
shape parameter?) 
 
How to account for spatial dependence? 
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-- Crude approaches 
 
  Assume spatial independence for fitting: 

 
But estimate standard errors by resampling 
(to take into account spatial dependence) 

 
Adjust tests of field / local significance: 
 
Use “false discovery rate” 
(more powerful than Bonferroni procedure) 
 
Need to adjust for effect of spatial dependence? 

 


