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Evolution of passive tracers in the Gulf of Mexico
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Suggests Lagrangian vortex/eddy/ring with impenetrable boundary.
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Eulerian assessment is observer dependent (not objective)
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Coherent Lagrangian Loop Current ring
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Objective description of material deformation

®Let v(x,t), where x € U C R2, ¢t € [ty,#1] C R and such that
V .v = 0, 1s a (smooth) unsteady incompressible 2-d velocity field.

® Fluid trajectories obey the finite-time dynamical system:
x = v(x,1t). (1)
® The flow map,

t : :
Fto(x()) - X(Z’ t()? XO)’ (2)
associates time fg and ¢ positions.

® Consider a material curve y, = F{ (y().




® Consider the local strefching of y under advection.

> First select a parameterization for yy: s — r(s).
> Tangent to v, r’(s). Tangent vector to y,,

SF(r(s)) = DFL(r(s)r(s). 3)
Fiy DF. (r (s))r" (5)
r'(s) Vi

Yo

> The local stretching:

4)

where
= (DF})) ' DFy, (5)

is the (right) Cauchy—Green strain tensor.



® It is important to realize that DI and C are objective.
> Consider a change of the observer:
x—=>X=00)x +b@), t—i=t++a, (6)

where O € SO(2) and « is a constant.
> A vector u 1s objective 1f

u=Qu (= [uf = |ul). (7)
> A tensor T 1s objective if
T =0T0' (= Ti=0Tu). (8)
> Note that DF transforms as
DF = DF Qg = D(QF +b)Q, = QDFQ, . 9)

SO 1s objective.
> Consequently, C transforms as

C = (DF)'DF = (QDFQ,) ' ODFQ, = QoCQ,y, (10)

so 1s also objective.



® The CG tensor is symmetric and positive definite (u ' Cu = IDFu|? >
0 Yu # 0 because DFu # 0 as DF es invertible).

> Its eigenvalues {A;(xg)} and eigenvectors {&; (xq)} satisty:

V-uv=0
O<A1( UE )Az_lfl, 515]:51], l:1,2 (11)

JAi

> While {&;} do not have a global orientation, i.e., C(£§;) =

A;(X£§&;), tangent curves (called in visualization) are
well defined.



Coherent Lagrangian vortex boundaries

incoherent belt (typical)
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coherent belt (exceptional)

Seek material loops with annular neighborhoods showing no leading
order change 1n averaged stretching.



Variational problem and solution

® Introduce the functional

8. [r] = ggr(r, r')ds = 95 \/r\’/%)r’ ds, (12)

1.e., the stretching integrated along a loop T' 3 s = r(s) € V.

® Consider loops r(s) + €h(s), € > 0 small, and require
8.r + h] = 8:[r] + O(&?) (13)
i.e., §; does not change within thin annular neighborhood of y,.

® Same as requiring &, to be stationary:

08¢ [r|(h) = 856 (2—: — dis%) -hds = 0. (14)
® The Euler-Lagrange equation follows:
ia_r — 8_7: =0 (15)
dsor’ Or ’

which 1s an ODE that could be solved, but 1s 2nd order and does not
offer much clarity.



® However, Noether’s theorem guarantees:

0 r’-C(r)r’
r——r-r/ztz\/ ) = A = const. (16)
al’/ e
> Loops satistying (15) are uniformly stretching—i.e., all their
subsets stretch by the same factor A.

> Defies universal tendency of material curves to stretch exponen-
tially in turbulence.

® Equation (15) 1s a 1st-order ODE, but is implicit. An explicit ODE
follows by writing

r' = af + B, (17)
which gives:

T PP (o B =)
r=y () = \/kz(r) — Aq(r) )= \/AZ(F) — A1) 52(:1);3)

whenever A1(r) < A% < Ao (r).

> Solutions to (17) need not be loops. Closed curves follow as [imit
cycles, which we call



> It can be shown (Karrasch et al. 2015) that a A-loop must contain
at least two points x(’)k such that

C(xg) = Id, (19)
: : .. (V-v=0)
which represent singularities of C where Ay = Ay = 1

and thus {&;} are not well defined. Singularities in line fields are
analogous to critical points in vector fields.

> Furthermore, the A-loops follow as nonintersecting families.
The outermost member of a family corresponds to the optimal

boundary of a coherent Lagrangian eddy.

A-line
boundary of CLE

A-lodp family of A-loops



> Typically, the A-loops exist for A ~ 1. As a result, CLE
boundaries nearly reassume their initial arclength at time t. To
see this, let yg be a A = 1 loop. Then

arclength(Ff (7o) = b \/n (r)- Clprymt () ds
B 95 I
B 14+ 14X °
1 2
— d
%\/l—l-lz—l_l—l-lz °

= arclength(y). (20)

> Enclosed area conservation further conveys Lagrangian vortices
exceptional coherence.

> Finally, the A-loops are robust: they survive under flow pertur-
bations (limit cycles are structurally stable). Consequential for
dealing with imperfect data.






200 d integration with A = 1.05.
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Velocity derived from satellite altimetry
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e Altimeter measures SSH anomaly.
e Global maps since 1992.

e Weekly data, ~25 km.

e Distributed by AVISO.

e Assumption: v = gV-Ln/f.



Satellite-derived chlorophyll
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Satellite-tracked drifters
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Compare with submesoscale-permitting simulation
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Possible climatic consequences
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Coherent transport
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Final remarks

® CLE detection now coded in Lagrangian Coherent Structure (LCS)
Toolkit (Onu et al., 2015).

® The A-loops are geodesics—can be seen through appropriate re-
parametrization that makes Lagrangian quadratic. The metric 1s
Lorentzian and vanishes so geodesics are null—leads to cosmolog-
ical analogy.

® The A-loops are generalized KAM tori (i.e., elliptic LCS)—approximate
KAM tori with few iterations. Can KAM theory explain the
occurrence of CLE? Ongoing work with R. de la Llave (Georgia
Tech).

® CLE can be extracted levelwise to draw a 3-d picture—most ap-
propriate perhaps in mesoscale flows. Full 3-d analysis 1s possible
using an objective vorticity-based approach (Haller et al., 2016).

® Work 1n progress is the characterization of swirling structures in
dissipative velocity fields.



Escuela interdisciplinaria de transporte en
fluidos geofisicos: de los remolinos oceanicos
a los agujeros negros

Impartido por:
F. J. Beron-Vera

Department of Atmospheric Sciences
Rosesntiel School of Marine and Atmospheric Science
University of Miami
Lugar:

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Fechas:

Del 5 al 16 de diciember 2016.



PhD thesis theme in RSMAS?
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Thank you.
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